Bayesian design of experiments for logistic regression to evaluate multiple nuclear forensic algorithms
نویسندگان
چکیده
منابع مشابه
Optimal Bayesian Design Applied to Logistic Regression Experiments
A traditional way to design a binary response experiment is to design the experiment to be most efficient for a best guess of the parameter values. A design which is optimal for a best guess however may not be efficient for parameter values close to that best guess. We propose designs which formally account for the prior uncertainty in the parameter values. A design for a situation where the be...
متن کاملBayesian computation for logistic regression
A method for the simulation of samples from the exact posterior distributions of the parameters in logistic regression is proposed. It is based on the principle of data augmentation and a latent variable is introduced, similar to the approach of Albert and Chib (J. Am. Stat. Assoc. 88 (1993) 669), who applied it to the probit model. In general, the full conditional distributions are intractable...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملExperiments on logistic regression
In this report, several experiments have been conducted on a spam data set with Logistic Regression based on Gradient Descent approach. First, the overfitting effect is shown with basic settings (vanilla version). Then Stochastic Gradient Descent and 2-Norm Regularization techniques are both implemented with demonstration of the benefits of these two methods in preventing overfitting. Besides, ...
متن کاملBayesian multivariate logistic regression.
Bayesian analyses of multivariate binary or categorical outcomes typically rely on probit or mixed effects logistic regression models that do not have a marginal logistic structure for the individual outcomes. In addition, difficulties arise when simple noninformative priors are chosen for the covariance parameters. Motivated by these problems, we propose a new type of multivariate logistic dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Stochastic Models in Business and Industry
سال: 2018
ISSN: 1524-1904,1526-4025
DOI: 10.1002/asmb.2359